Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38328106

ABSTRACT

Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.

2.
Biochemistry ; 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38252844

ABSTRACT

Erythropoietin-producing hepatoma (Eph) receptors are a family of tyrosine kinases that can act as tumor promoters or tumor suppressors, depending on the receptor and cancer cell type. Cancer-associated somatic mutations have been identified in all Eph receptors, but in most cases, the functional effects of the mutations are unknown. In this study, we expressed and purified the kinase domains of wild-type (WT) EphA3 and EphB2 along with 16 cancer-associated mutants. We identified mutations that decrease EphA3 activity and both activating and inhibitory mutations in EphB2. To shed light on the mechanisms by which the mutations altered kinase activity, we measured the thermal stabilities of the enzymes and performed steady-state kinetic experiments. We also expressed the full-length receptors in HEK293T cells to determine the cellular effects. WT EphB2 promoted downstream ERK signaling, while a kinase-inactive mutant (S706F) was similar to the control cells. In contrast, WT EphA3 (but not loss-of-function mutants) inhibited ERK signaling. The reciprocal effects of EphB2 and EphA3 on ERK phosphorylation in HEK293T cells were also evident in Ras-GTP loading. Thus, consistent with the dual roles of Eph receptors as tumor promoters and tumor suppressors, somatic mutations have the potential to increase or decrease Eph function, resulting in changes in the downstream signaling transduction.

3.
EBioMedicine ; 99: 104906, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061240

ABSTRACT

BACKGROUND: In spite of new treatments, the incidence of type 2 diabetes (T2D) and its morbidities continue to rise. The key feature of T2D is resistance of adipose tissue and other organs to insulin. Approaches to overcome insulin resistance are limited due to a poor understanding of the mechanisms and inaccessibility of drugs to relevant intracellular targets. We previously showed in mice and humans that CD248, a pre/adipocyte cell surface glycoprotein, acts as an adipose tissue sensor that mediates the transition from healthy to unhealthy adipose, thus promoting insulin resistance. METHODS: Molecular mechanisms by which CD248 regulates insulin signaling were explored using in vivo insulin clamp studies and biochemical analyses of cells/tissues from CD248 knockout (KO) and wild-type (WT) mice with diet-induced insulin resistance. Findings were validated with human adipose tissue specimens. FINDINGS: Genetic deletion of CD248 in mice, overcame diet-induced insulin resistance with improvements in glucose uptake and lipolysis in white adipose tissue depots, effects paralleled by increased adipose/adipocyte GLUT4, phosphorylated AKT and GSK3ß, and reduced ATGL. The insulin resistance of the WT mice could be attributed to direct interaction of the extracellular domains of CD248 and the insulin receptor (IR), with CD248 acting to block insulin binding to the IR. This resulted in dampened insulin-mediated autophosphorylation of the IR, with reduced downstream signaling/activation of intracellular events necessary for glucose and lipid homeostasis. INTERPRETATION: Our discovery of a cell-surface CD248-IR complex that is accessible to pharmacologic intervention, opens research avenues toward development of new agents to prevent/reverse insulin resistance. FUNDING: Funded by Canadian Institutes of Health Research (CIHR), Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundations for Innovation (CFI), the Swedish Diabetes Foundation, Family Ernfors Foundation and Novo Nordisk Foundation.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Mice , Animals , Insulin/metabolism , Insulin Resistance/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Diabetes Mellitus, Type 2/metabolism , Mice, Knockout , Canada , Adipose Tissue/metabolism , Obesity/metabolism , Antigens, Neoplasm/metabolism , Antigens, CD/genetics , Antigens, CD/metabolism
4.
FASEB J ; 38(1): e23355, 2024 01.
Article in English | MEDLINE | ID: mdl-38071609

ABSTRACT

Drosophila melanogaster (fruit fly) insulin receptor (D-IR) is highly homologous to the human counterpart. Like the human pathway, D-IR responds to numerous insulin-like peptides to activate cellular signals that regulate growth, development, and lipid metabolism in fruit flies. Allelic mutations in the D-IR kinase domain elevate life expectancy in fruit flies. We developed a robust heterologous expression system to express and purify wild-type and longevity-associated mutant D-IR kinase domains to investigate enzyme kinetics and substrate specificities. D-IR exhibits remarkable similarities to the human insulin receptor kinase domain but diverges in substrate preferences. We show that longevity-associated mutations reduce D-IR catalytic activity. Deletion of the unique kinase insert domain portion or mutations proximal to activating tyrosines do not influence kinase activity, suggesting their potential role in substrate recruitment and downstream signaling. Through biochemical investigations, this study enhances our comprehension of D-IR's role in Drosophila physiology, complementing genetic studies and expanding our knowledge on the catalytic functions of this conserved signaling pathway.


Subject(s)
Drosophila Proteins , Drosophila , Humans , Animals , Drosophila/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Drosophila melanogaster/metabolism , Longevity/genetics , Signal Transduction/physiology , Insulin/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
5.
Kinases Phosphatases ; 1(3): 167-180, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37662484

ABSTRACT

Ack1 is a nonreceptor tyrosine kinase that is associated with cellular proliferation and survival. The receptor tyrosine kinase Mer, a member of the TAM family of receptors, has previously been reported to be an upstream activator of Ack1 kinase. The mechanism linking the two kinases, however, has not been investigated. We confirmed that Ack1 and Mer interact by co-immunoprecipitation experiments and found that Mer expression led to increased Ack1 activity. The effect on Ack1 was dependent on the kinase activity of Mer, whereas mutation of the Mer C-terminal tyrosines Y867 and Y924 did not significantly decrease the ability of Mer to activate Ack1. Ack1 possesses a Mig6 Homology Region (MHR) that contains adjacent regulatory tyrosines (Y859 and Y860). Using synthetic peptides, we showed that Mer preferentially binds and phosphorylates the MHR sequence containing phosphorylated pY860, as compared to the pY859 sequence. This suggested the possibility of sequential phosphorylation within the MHR of Ack1, as has been observed previously for other kinases. In cells co-expressing Mer and Ack1 MHR mutants, the Y859F mutant had higher activity than the Y860F mutant, consistent with this model. The interaction between Mer and Ack1 could play a role in immune cell signaling in normal physiology and could also contribute to the hyperactivation of Ack1 in prostate cancer and other tumors.

6.
J Biol Chem ; 299(9): 105115, 2023 09.
Article in English | MEDLINE | ID: mdl-37527777

ABSTRACT

Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.


Subject(s)
Colorectal Neoplasms , Receptor, EphB1 , Animals , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/physiopathology , Mutation , Receptor, EphB1/genetics , Receptor, EphB1/metabolism , Signal Transduction/physiology , Cell Line , Enzyme Activation/genetics , Protein Stability , MAP Kinase Signaling System/genetics , Cell Movement/genetics
7.
Cells ; 12(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36980241

ABSTRACT

The nonreceptor tyrosine kinase (NRTK) Ack1 comprises a distinct arrangement of non-catalytic modules. Its SH3 domain has a C-terminal to the kinase domain (SH1), in contrast to the typical SH3-SH2-SH1 layout in NRTKs. The Ack1 is the only protein that shares a region of high homology to the tumor suppressor protein Mig6, a modulator of EGFR. The vertebrate Acks make up the only tyrosine kinase (TK) family known to carry a UBA domain. The GTPase binding and SAM domains are also uncommon in the NRTKs. In addition to being a downstream effector of receptor tyrosine kinases (RTKs) and integrins, Ack1 can act as an epigenetic regulator, modulate the degradation of the epidermal growth factor receptor (EGFR), confer drug resistance, and mediate the progression of hormone-sensitive tumors. In this review, we discuss the domain architecture of Ack1 in relation to other protein kinases that possess such defined regulatory domains.


Subject(s)
ErbB Receptors , Protein-Tyrosine Kinases , ErbB Receptors/metabolism , Protein Domains , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Protein-Tyrosine Kinases/physiology , Receptor Protein-Tyrosine Kinases/metabolism , src Homology Domains
8.
Biochemistry ; 62(6): 1124-1137, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36854171

ABSTRACT

Tyrosine kinases (TKs) play essential roles in signaling processes that regulate cell survival, migration, and proliferation. Dysregulation of tyrosine kinases underlies many disorders, including cancer, cardiovascular and developmental diseases, as well as pathologies of the immune system. Ack1 and Brk are nonreceptor tyrosine kinases (NRTKs) best known for their roles in cancer. Here, we have biochemically characterized novel Ack1 and Brk mutations identified in patients with systemic lupus erythematosus (SLE). These mutations are the first SLE-linked polymorphisms found among NRTKs. We show that two of the mutants are catalytically inactive, while the other three have reduced activity. To understand the structural changes associated with the loss-of-function phenotype, we solved the crystal structure of one of the Ack1 kinase mutants, K161Q. Furthermore, two of the mutated residues (Ack1 A156 and K161) critical for catalytic activity are highly conserved among other TKs, and their substitution in other members of the kinase family could have implications in cancer. In contrast to canonical gain-of-function mutations in TKs observed in many cancers, we report loss-of-function mutations in Ack1 and Brk, highlighting the complexity of TK involvement in human diseases.


Subject(s)
Neoplasms , Humans , Mutation , Phosphorylation , Tyrosine
9.
Chem Biol Drug Des ; 101(1): 87-102, 2023 01.
Article in English | MEDLINE | ID: mdl-36029027

ABSTRACT

Human epidermal growth factor receptor 2 (HER2) is an oncogenic driver and key therapeutic target for human cancers. Current therapies targeting HER2 are primarily based on overexpression of the wild-type form of HER2. However, kinase domain mutations have been identified that can increase the activity of HER2 even when expressed at basal levels. Using purified enzymes, we confirmed the hyperactivity of two HER2 mutants (D769Y and P780insGSP). To identify small molecule inhibitors against these cancer-associated variants, we used a combined approach consisting of biochemical testing, similarity-based searching, and in silico modeling. These approaches resulted in the identification of a candidate molecule that inhibits mutant forms of HER2 in vitro and in cell-based assays. Our structural model predicts that the compound takes advantage of water-mediated interactions in the HER2 kinase binding pocket.


Subject(s)
Neoplasms , Receptor, ErbB-2 , Humans , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Protein Binding , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Cell Line, Tumor
10.
Nat Commun ; 13(1): 6929, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376335

ABSTRACT

Solid tumours are highly refractory to immune checkpoint blockade (ICB) therapies due to the functional impairment of effector T cells and their inefficient trafficking to tumours. T-cell activation is negatively regulated by C-terminal Src kinase (CSK); however, the exact mechanism remains unknown. Here we show that the conserved oncogenic tyrosine kinase Activated CDC42 kinase 1 (ACK1) is able to phosphorylate CSK at Tyrosine 18 (pY18), which enhances CSK function, constraining T-cell activation. Mice deficient in the Tnk2 gene encoding Ack1, are characterized by diminished CSK Y18-phosphorylation and spontaneous activation of CD8+ and CD4+ T cells, resulting in inhibited growth of transplanted ICB-resistant tumours. Furthermore, ICB treatment of castration-resistant prostate cancer (CRPC) patients results in re-activation of ACK1/pY18-CSK signalling, confirming the involvement of this pathway in ICB insensitivity. An ACK1 small-molecule inhibitor, (R)-9b, recapitulates inhibition of ICB-resistant tumours, which provides evidence for ACK1 enzymatic activity playing a pivotal role in generating ICB resistance. Overall, our study identifies an important mechanism of ICB resistance and holds potential for expanding the scope of ICB therapy to tumours that are currently unresponsive.


Subject(s)
Immune Checkpoint Inhibitors , Prostatic Neoplasms , Animals , Humans , Male , Mice , CSK Tyrosine-Protein Kinase , Phosphorylation , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein-Tyrosine Kinases/metabolism
11.
J Biol Chem ; 298(12): 102664, 2022 12.
Article in English | MEDLINE | ID: mdl-36334623

ABSTRACT

Human Tnk1 (thirty-eight negative kinase 1) is a member of the Ack family of nonreceptor tyrosine kinases. Tnk1 contains a sterile alpha motif, a tyrosine kinase catalytic domain, an SH3 (Src homology 3) domain, and a large C-terminal region that contains a ubiquitin association domain. However, specific physiological roles for Tnk1 have not been characterized in depth. Here, we expressed and purified Tnk1 from Sf9 insect cells and established an in vitro assay system using a peptide substrate derived from the Wiskott-Aldrich Syndrome Protein (WASP). By Tnk1 expression in mammalian cells, we found that the N-terminal SAM domain is important for self-association and kinase activity. We also studied a fusion protein, originally discovered in a Hodgkin's Lymphoma cell line, that contains an unrelated sequence from the C17ORF61 gene fused to the C-terminus of Tnk1. Cells expressing the fusion protein showed increased tyrosine phosphorylation of cellular substrates relative to cells expressing WT Tnk1. A truncated Tnk1 construct (residues 1-465) also showed enhanced phosphorylation, indicating that the C17ORF61 sequence was dispensable for the effect. Additionally, in vitro kinase assays with the WASP peptide substrate showed no increase in intrinsic Tnk1 activity in C-terminally truncated constructs, suggesting that the truncations did not simply remove an autoinhibitory element. Fluorescence microscopy experiments demonstrated that the C-terminus of Tnk1 plays an important role in the subcellular localization of the kinase. Taken together, our data suggest that the noncatalytic regions of Tnk1 play important roles in governing activity and substrate phosphorylation.


Subject(s)
Protein-Tyrosine Kinases , src Homology Domains , Humans , Fetal Proteins/metabolism , Mammals/metabolism , Peptides/metabolism , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Substrate Specificity , Tyrosine/metabolism
12.
FEBS Lett ; 596(21): 2808-2820, 2022 11.
Article in English | MEDLINE | ID: mdl-36178070

ABSTRACT

Ack1 is a proto-oncogenic tyrosine kinase with homology to the tumour suppressor Mig6, an inhibitor of the epidermal growth factor receptor (EGFR). The residues critical for binding of Mig6 to EGFR are conserved within the Mig6 homology region (MHR) of Ack1. We tested whether intramolecular interactions between the Ack1 MHR and kinase domain (KD) are regulated by phosphorylation. We identified two Src phosphorylation sites within the MHR (Y859, Y860). Addition of Src-phosphorylated MHR to the Ack1 KD enhanced enzymatic activity. Co-expression of Src in cells led to increased Ack1 activity; mutation of Y859/Y860 blocked this increase. Collectively, the data suggest that phosphorylation of the Ack1 MHR regulates its kinase activity. Phosphorylation of Y859/Y860 occurs in cancers of the brain, breast, colon, and prostate, where genomic amplification or somatic mutations of Ack1 play a role in disease progression. Our findings suggest that MHR phosphorylation could contribute to Ack1 dysregulation in tumours.


Subject(s)
Adaptor Proteins, Signal Transducing , ErbB Receptors , Protein-Tyrosine Kinases , Tumor Suppressor Proteins , Tyrosine , Humans , Male , ErbB Receptors/genetics , ErbB Receptors/metabolism , Phosphorylation , Protein Processing, Post-Translational , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Tyrosine/genetics , Tyrosine/metabolism , Tumor Suppressor Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism
13.
J Biol Chem ; 297(3): 101010, 2021 09.
Article in English | MEDLINE | ID: mdl-34324831

ABSTRACT

Insulin receptor (IR) is a membrane tyrosine kinase that mediates the response of cells to insulin. IR activity has been shown to be modulated by changes in plasma membrane lipid composition, but the properties and structural determinants of lipids mediating IR activity are poorly understood. Here, using efficient methyl-alpha-cyclodextrin mediated lipid exchange, we studied the effect of altering plasma membrane outer leaflet phospholipid composition upon the activity of IR in mammalian cells. After substitution of endogenous lipids with lipids having an ability to form liquid ordered (Lo) domains (sphingomyelins) or liquid disordered (Ld) domains (unsaturated phosphatidylcholines (PCs)), we found that the propensity of lipids to form ordered domains is required for high IR activity. Additional substitution experiments using a series of saturated PCs showed that IR activity increased substantially with increasing acyl chain length, which increases both bilayer width and the propensity to form ordered domains. Incorporating purified IR into alkyl maltoside micelles with increasing hydrocarbon lengths also increased IR activity, but more modestly than by increasing lipid acyl chain length in cells. These results suggest that the ability to form Lo domains as well as wide bilayer width contributes to increased IR activity. Inhibition of phosphatases showed that some of the lipid dependence of IR activity upon lipid structure reflected protection from phosphatases by lipids that support Lo domain formation. These results are consistent with a model in which a combination of bilayer width and ordered domain formation modulates IR activity via IR conformation and accessibility to phosphatases.


Subject(s)
Lipid Bilayers/metabolism , Membrane Microdomains/metabolism , Phospholipids/metabolism , Receptor, Insulin/metabolism , Animals , CHO Cells , Cricetulus
14.
Chemistry ; 27(37): 9542-9549, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33904620

ABSTRACT

The selective recognition of tyrosine residues in peptides is an appealing approach to inhibiting their tyrosine kinase (TK)-mediated phosphorylation. Herein, we describe pseudopeptidic cages that efficiently protect substrates from the action of the Src TK enzyme, precluding the corresponding Tyr phosphorylation. Fluorescence emission titrations show that the most efficient cage inhibitors strongly bind the peptide substrates with a very good correlation between the binding constant and the inhibitory potency. Structural insights and additional control experiments further support the proposed mechanism of selective supramolecular protection of the substrates. Moreover, the approach also works in a completely different kinase-substrate system. These results illustrate the potential of supramolecular complexes for the efficient and selective modulation of TK signaling.


Subject(s)
Peptides , src-Family Kinases , Peptides/metabolism , Phosphorylation , Protein-Tyrosine Kinases , Substrate Specificity , Tyrosine , src-Family Kinases/metabolism
15.
Int J Mol Sci ; 21(12)2020 Jun 14.
Article in English | MEDLINE | ID: mdl-32545875

ABSTRACT

Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling.


Subject(s)
Neoplasms/enzymology , src-Family Kinases/chemistry , src-Family Kinases/metabolism , Animals , Catalytic Domain , Gene Expression Regulation, Neoplastic , Humans , Models, Molecular , Protein Conformation , Protein Domains , Signal Transduction
16.
Biochem Biophys Rep ; 23: 100775, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32566764

ABSTRACT

Homologous enzymes from different species display functional characteristics that correlate with the physiological and environmental temperatures encountered by the organisms. In this study, we have investigated the temperature sensitivity of the nonreceptor tyrosine kinase Src. We compared the temperature dependencies of c-Src and two Src kinases from single-celled eukaryotes, the choanoflagellate Monosiga brevicollis and the filasterean Capsaspora owczarzaki. Metazoan c-Src exhibits temperature sensitivity, with high activity at 30 °C and 37 °C. This sensitivity is driven by changes in substrate binding as well as maximal velocity, and it is dependent on the amino acid sequence surrounding tyrosine in the substrate. When tested with a peptide that displays temperature-dependent phosphorylation by c-Src, the enzymatic rates for the unicellular Src kinases show much less variation over the temperatures tested. The data demonstrate that unicellular Src kinases are temperature compensated relative to metazoan c-Src, consistent with an evolutionary adaptation to their environments.

17.
Protein Sci ; 29(2): 350-359, 2020 02.
Article in English | MEDLINE | ID: mdl-31697410

ABSTRACT

Most signal transduction pathways in humans are regulated by protein kinases through phosphorylation of their protein substrates. Typical eukaryotic protein kinases are of two major types: those that phosphorylate-specific sequences containing tyrosine (~90 kinases) and those that phosphorylate either serine or threonine (~395 kinases). The highly conserved catalytic domain of protein kinases comprises a smaller N lobe and a larger C lobe separated by a cleft region lined by the activation loop. Prior studies find that protein tyrosine kinases recognize peptide substrates by binding the polypeptide chain along the C-lobe on one side of the activation loop, while serine/threonine kinases bind their substrates in the cleft and on the side of the activation loop opposite to that of the tyrosine kinases. Substrate binding structural studies have been limited to four families of the tyrosine kinase group, and did not include Src tyrosine kinases. We examined peptide-substrate binding to Src using paramagnetic-relaxation-enhancement NMR combined with molecular dynamics simulations. The results suggest Src tyrosine kinase can bind substrate positioning residues C-terminal to the phosphoacceptor residue in an orientation similar to serine/threonine kinases, and unlike other tyrosine kinases. Mutagenesis corroborates this new perspective on tyrosine kinase substrate recognition. Rather than an evolutionary split between tyrosine and serine/threonine kinases, a change in substrate recognition may have occurred within the TK group of the human kinome. Protein tyrosine kinases have long been therapeutic targets, but many marketed drugs have deleterious off-target effects. More accurate knowledge of substrate interactions of tyrosine kinases has the potential for improving drug selectivity.


Subject(s)
Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Peptides/chemistry , src-Family Kinases/chemistry , Humans , Peptides/metabolism , Protein Binding , Substrate Specificity , src-Family Kinases/metabolism
18.
Biochim Biophys Acta Biomembr ; 1861(4): 819-826, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30682326

ABSTRACT

The plasma membrane is a dynamic environment with a complex composition of lipids, proteins, and cholesterol. Areas enriched in cholesterol and sphingolipids are believed to form lipid rafts, domains of highly ordered lipids. The unique physical properties of these domains have been proposed to influence many cellular processes. Here, we demonstrate that the activation of insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF1R) depends critically on the structures of membrane sterols. IR and IGF1R autophosphorylation in vivo was inhibited by cholesterol depletion, and autophosphorylation was restored by the replacement with exogenous cholesterol. We next screened a variety of sterols for effects on IR activation. The ability of sterols to support IR autophosphorylation was strongly correlated to the propensity of the sterols to form ordered domains. IR autophosphorylation was fully restored by the incorporation of ergosterol, dihydrocholesterol, 7-dehydrocholesterol, lathosterol, desmosterol, and allocholesterol, partially restored by epicholesterol, and not restored by lanosterol, coprostanol, and 4-cholesten-3-one. These data support the hypothesis that the ability to form ordered domains is sufficient for a sterol to support ligand-induced activation of IR and IGF1R in intact mammalian cells.


Subject(s)
Membrane Microdomains/metabolism , Receptors, Somatomedin/metabolism , Sterols/metabolism , HEK293 Cells , Humans , Membrane Microdomains/chemistry , Phosphorylation , Receptor, IGF Type 1 , Receptors, Somatomedin/chemistry , Sterols/chemistry , Sterols/pharmacology , Structure-Activity Relationship
19.
Cell Chem Biol ; 26(3): 390-399.e5, 2019 03 21.
Article in English | MEDLINE | ID: mdl-30612951

ABSTRACT

ATP-competitive kinase inhibitors often bind several kinases due to the high conservation of the ATP binding pocket. Through clustering analysis of a large kinome profiling dataset, we found a cluster of eight promiscuous kinases that on average bind more than five times more kinase inhibitors than the other 398 kinases in the dataset. To understand the structural basis of promiscuous inhibitor binding, we determined the co-crystal structure of the receptor tyrosine kinase DDR1 with the type I inhibitors dasatinib and VX-680. Surprisingly, we find that DDR1 binds these type I inhibitors in an inactive conformation typically reserved for type II inhibitors. Our computational and biochemical studies show that DDR1 is unusually stable in this inactive conformation, giving a mechanistic explanation for inhibitor promiscuity. This phenotypic clustering analysis provides a strategy to obtain functional insights not available by sequence comparison alone.


Subject(s)
Discoidin Domain Receptor 1/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Amino Acid Sequence , Binding Sites , Cluster Analysis , Dasatinib/chemistry , Dasatinib/metabolism , Discoidin Domain Receptor 1/genetics , Discoidin Domain Receptor 1/metabolism , Humans , Molecular Dynamics Simulation , Mutagenesis , Piperazines/chemistry , Piperazines/metabolism , Protein Binding , Protein Kinase Inhibitors/metabolism , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein Structure, Tertiary , Sequence Alignment
20.
Drug Discov Today ; 24(1): 241-249, 2019 01.
Article in English | MEDLINE | ID: mdl-30077780

ABSTRACT

Cancer and arthritis present an enormous challenge to society. They share pathogenic pathways that involve extracellular matrix degradation, tissue invasion, and inflammation. Most cancer and arthritis treatments affect normal cell function to cause significant adverse effects in patients. Specific pathways that promote cancer and arthritis progression must be elucidated to design more targeted and effective therapeutics. The Src kinase and podoplanin (PDPN) receptor are upregulated in cancer cells, fibroblasts, synoviocytes, and immune cells that increase tissue invasion and inflammation to promote both cancer and arthritis. In this review, we discuss how Src and PDPN forge a path to tissue destruction, and how they can serve as targets for therapeutics to combat cancer and arthritis.


Subject(s)
Arthritis/metabolism , Membrane Glycoproteins/metabolism , Neoplasms/metabolism , src-Family Kinases/metabolism , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...